\(\int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx\) [341]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 95 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {\left (2 a^2+b^2\right ) x}{2 b^3}+\frac {2 a \sqrt {a^2+b^2} \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{b^3 d}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d} \]

[Out]

1/2*(2*a^2+b^2)*x/b^3-1/2*cosh(d*x+c)*(2*a-b*sinh(d*x+c))/b^2/d+2*a*arctanh((b-a*tanh(1/2*d*x+1/2*c))/(a^2+b^2
)^(1/2))*(a^2+b^2)^(1/2)/b^3/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2944, 2814, 2739, 632, 210} \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {2 a \sqrt {a^2+b^2} \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{b^3 d}+\frac {x \left (2 a^2+b^2\right )}{2 b^3}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d} \]

[In]

Int[(Cosh[c + d*x]^2*Sinh[c + d*x])/(a + b*Sinh[c + d*x]),x]

[Out]

((2*a^2 + b^2)*x)/(2*b^3) + (2*a*Sqrt[a^2 + b^2]*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(b^3*d) -
 (Cosh[c + d*x]*(2*a - b*Sinh[c + d*x]))/(2*b^2*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2944

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d}+\frac {i \int \frac {i a b-i \left (2 a^2+b^2\right ) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx}{2 b^2} \\ & = \frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d}-\frac {\left (a \left (a^2+b^2\right )\right ) \int \frac {1}{a+b \sinh (c+d x)} \, dx}{b^3} \\ & = \frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d}+\frac {\left (2 i a \left (a^2+b^2\right )\right ) \text {Subst}\left (\int \frac {1}{a-2 i b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{b^3 d} \\ & = \frac {\left (2 a^2+b^2\right ) x}{2 b^3}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d}-\frac {\left (4 i a \left (a^2+b^2\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2+b^2\right )-x^2} \, dx,x,-2 i b+2 a \tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{b^3 d} \\ & = \frac {\left (2 a^2+b^2\right ) x}{2 b^3}+\frac {2 a \sqrt {a^2+b^2} \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{b^3 d}-\frac {\cosh (c+d x) (2 a-b \sinh (c+d x))}{2 b^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.15 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {4 a^2 c+2 b^2 c+4 a^2 d x+2 b^2 d x+8 a \sqrt {-a^2-b^2} \arctan \left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2-b^2}}\right )-4 a b \cosh (c+d x)+b^2 \sinh (2 (c+d x))}{4 b^3 d} \]

[In]

Integrate[(Cosh[c + d*x]^2*Sinh[c + d*x])/(a + b*Sinh[c + d*x]),x]

[Out]

(4*a^2*c + 2*b^2*c + 4*a^2*d*x + 2*b^2*d*x + 8*a*Sqrt[-a^2 - b^2]*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 -
 b^2]] - 4*a*b*Cosh[c + d*x] + b^2*Sinh[2*(c + d*x)])/(4*b^3*d)

Maple [A] (verified)

Time = 3.82 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.76

method result size
risch \(\frac {x \,a^{2}}{b^{3}}+\frac {x}{2 b}+\frac {{\mathrm e}^{2 d x +2 c}}{8 b d}-\frac {a \,{\mathrm e}^{d x +c}}{2 b^{2} d}-\frac {a \,{\mathrm e}^{-d x -c}}{2 b^{2} d}-\frac {{\mathrm e}^{-2 d x -2 c}}{8 b d}+\frac {\sqrt {a^{2}+b^{2}}\, a \ln \left ({\mathrm e}^{d x +c}+\frac {a +\sqrt {a^{2}+b^{2}}}{b}\right )}{d \,b^{3}}-\frac {\sqrt {a^{2}+b^{2}}\, a \ln \left ({\mathrm e}^{d x +c}-\frac {-a +\sqrt {a^{2}+b^{2}}}{b}\right )}{d \,b^{3}}\) \(167\)
derivativedivides \(\frac {-\frac {2 a \sqrt {a^{2}+b^{2}}\, \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{b^{3}}-\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-b +2 a}{2 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (2 a^{2}+b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 b^{3}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-b -2 a}{2 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-2 a^{2}-b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 b^{3}}}{d}\) \(189\)
default \(\frac {-\frac {2 a \sqrt {a^{2}+b^{2}}\, \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{b^{3}}-\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-b +2 a}{2 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (2 a^{2}+b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 b^{3}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-b -2 a}{2 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-2 a^{2}-b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 b^{3}}}{d}\) \(189\)

[In]

int(cosh(d*x+c)^2*sinh(d*x+c)/(a+b*sinh(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

x/b^3*a^2+1/2*x/b+1/8/b/d*exp(2*d*x+2*c)-1/2*a/b^2/d*exp(d*x+c)-1/2*a/b^2/d*exp(-d*x-c)-1/8/b/d*exp(-2*d*x-2*c
)+(a^2+b^2)^(1/2)*a/d/b^3*ln(exp(d*x+c)+(a+(a^2+b^2)^(1/2))/b)-(a^2+b^2)^(1/2)*a/d/b^3*ln(exp(d*x+c)-(-a+(a^2+
b^2)^(1/2))/b)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 446 vs. \(2 (87) = 174\).

Time = 0.27 (sec) , antiderivative size = 446, normalized size of antiderivative = 4.69 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {b^{2} \cosh \left (d x + c\right )^{4} + b^{2} \sinh \left (d x + c\right )^{4} + 4 \, {\left (2 \, a^{2} + b^{2}\right )} d x \cosh \left (d x + c\right )^{2} - 4 \, a b \cosh \left (d x + c\right )^{3} + 4 \, {\left (b^{2} \cosh \left (d x + c\right ) - a b\right )} \sinh \left (d x + c\right )^{3} - 4 \, a b \cosh \left (d x + c\right ) + 2 \, {\left (3 \, b^{2} \cosh \left (d x + c\right )^{2} + 2 \, {\left (2 \, a^{2} + b^{2}\right )} d x - 6 \, a b \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{2} + 8 \, {\left (a \cosh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a \sinh \left (d x + c\right )^{2}\right )} \sqrt {a^{2} + b^{2}} \log \left (\frac {b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) + 2 \, a^{2} + b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) + a b\right )} \sinh \left (d x + c\right ) + 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right ) + a\right )}}{b \cosh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) + 2 \, {\left (b \cosh \left (d x + c\right ) + a\right )} \sinh \left (d x + c\right ) - b}\right ) - b^{2} + 4 \, {\left (b^{2} \cosh \left (d x + c\right )^{3} + 2 \, {\left (2 \, a^{2} + b^{2}\right )} d x \cosh \left (d x + c\right ) - 3 \, a b \cosh \left (d x + c\right )^{2} - a b\right )} \sinh \left (d x + c\right )}{8 \, {\left (b^{3} d \cosh \left (d x + c\right )^{2} + 2 \, b^{3} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + b^{3} d \sinh \left (d x + c\right )^{2}\right )}} \]

[In]

integrate(cosh(d*x+c)^2*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

1/8*(b^2*cosh(d*x + c)^4 + b^2*sinh(d*x + c)^4 + 4*(2*a^2 + b^2)*d*x*cosh(d*x + c)^2 - 4*a*b*cosh(d*x + c)^3 +
 4*(b^2*cosh(d*x + c) - a*b)*sinh(d*x + c)^3 - 4*a*b*cosh(d*x + c) + 2*(3*b^2*cosh(d*x + c)^2 + 2*(2*a^2 + b^2
)*d*x - 6*a*b*cosh(d*x + c))*sinh(d*x + c)^2 + 8*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh
(d*x + c)^2)*sqrt(a^2 + b^2)*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + 2*a^2 + b^
2 + 2*(b^2*cosh(d*x + c) + a*b)*sinh(d*x + c) + 2*sqrt(a^2 + b^2)*(b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*
cosh(d*x + c)^2 + b*sinh(d*x + c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh(d*x + c) + a)*sinh(d*x + c) - b)) - b^2 +
4*(b^2*cosh(d*x + c)^3 + 2*(2*a^2 + b^2)*d*x*cosh(d*x + c) - 3*a*b*cosh(d*x + c)^2 - a*b)*sinh(d*x + c))/(b^3*
d*cosh(d*x + c)^2 + 2*b^3*d*cosh(d*x + c)*sinh(d*x + c) + b^3*d*sinh(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cosh(d*x+c)**2*sinh(d*x+c)/(a+b*sinh(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.68 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {{\left (4 \, a e^{\left (-d x - c\right )} - b\right )} e^{\left (2 \, d x + 2 \, c\right )}}{8 \, b^{2} d} - \frac {\sqrt {a^{2} + b^{2}} a \log \left (\frac {b e^{\left (-d x - c\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-d x - c\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{b^{3} d} + \frac {{\left (2 \, a^{2} + b^{2}\right )} {\left (d x + c\right )}}{2 \, b^{3} d} - \frac {4 \, a e^{\left (-d x - c\right )} + b e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, b^{2} d} \]

[In]

integrate(cosh(d*x+c)^2*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

-1/8*(4*a*e^(-d*x - c) - b)*e^(2*d*x + 2*c)/(b^2*d) - sqrt(a^2 + b^2)*a*log((b*e^(-d*x - c) - a - sqrt(a^2 + b
^2))/(b*e^(-d*x - c) - a + sqrt(a^2 + b^2)))/(b^3*d) + 1/2*(2*a^2 + b^2)*(d*x + c)/(b^3*d) - 1/8*(4*a*e^(-d*x
- c) + b*e^(-2*d*x - 2*c))/(b^2*d)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.63 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {\frac {4 \, {\left (2 \, a^{2} + b^{2}\right )} {\left (d x + c\right )}}{b^{3}} + \frac {b e^{\left (2 \, d x + 2 \, c\right )} - 4 \, a e^{\left (d x + c\right )}}{b^{2}} - \frac {{\left (4 \, a b e^{\left (d x + c\right )} + b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )}}{b^{3}} - \frac {8 \, {\left (a^{3} + a b^{2}\right )} \log \left (\frac {{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{\sqrt {a^{2} + b^{2}} b^{3}}}{8 \, d} \]

[In]

integrate(cosh(d*x+c)^2*sinh(d*x+c)/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

1/8*(4*(2*a^2 + b^2)*(d*x + c)/b^3 + (b*e^(2*d*x + 2*c) - 4*a*e^(d*x + c))/b^2 - (4*a*b*e^(d*x + c) + b^2)*e^(
-2*d*x - 2*c)/b^3 - 8*(a^3 + a*b^2)*log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + c) + 2
*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*b^3))/d

Mupad [B] (verification not implemented)

Time = 1.29 (sec) , antiderivative size = 212, normalized size of antiderivative = 2.23 \[ \int \frac {\cosh ^2(c+d x) \sinh (c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {{\mathrm {e}}^{2\,c+2\,d\,x}}{8\,b\,d}-\frac {{\mathrm {e}}^{-2\,c-2\,d\,x}}{8\,b\,d}+\frac {x\,\left (2\,a^2+b^2\right )}{2\,b^3}-\frac {a\,{\mathrm {e}}^{-c-d\,x}}{2\,b^2\,d}-\frac {a\,{\mathrm {e}}^{c+d\,x}}{2\,b^2\,d}-\frac {a\,\ln \left (\frac {2\,a\,{\mathrm {e}}^{c+d\,x}\,\left (a^2+b^2\right )}{b^4}-\frac {2\,a\,\sqrt {a^2+b^2}\,\left (b-a\,{\mathrm {e}}^{c+d\,x}\right )}{b^4}\right )\,\sqrt {a^2+b^2}}{b^3\,d}+\frac {a\,\ln \left (\frac {2\,a\,\sqrt {a^2+b^2}\,\left (b-a\,{\mathrm {e}}^{c+d\,x}\right )}{b^4}+\frac {2\,a\,{\mathrm {e}}^{c+d\,x}\,\left (a^2+b^2\right )}{b^4}\right )\,\sqrt {a^2+b^2}}{b^3\,d} \]

[In]

int((cosh(c + d*x)^2*sinh(c + d*x))/(a + b*sinh(c + d*x)),x)

[Out]

exp(2*c + 2*d*x)/(8*b*d) - exp(- 2*c - 2*d*x)/(8*b*d) + (x*(2*a^2 + b^2))/(2*b^3) - (a*exp(- c - d*x))/(2*b^2*
d) - (a*exp(c + d*x))/(2*b^2*d) - (a*log((2*a*exp(c + d*x)*(a^2 + b^2))/b^4 - (2*a*(a^2 + b^2)^(1/2)*(b - a*ex
p(c + d*x)))/b^4)*(a^2 + b^2)^(1/2))/(b^3*d) + (a*log((2*a*(a^2 + b^2)^(1/2)*(b - a*exp(c + d*x)))/b^4 + (2*a*
exp(c + d*x)*(a^2 + b^2))/b^4)*(a^2 + b^2)^(1/2))/(b^3*d)